OPERATING INSTRUCTIONS | Preflight | 7-1 | | | | | | |---|-------------|--|--|--|--|--| | Starting Engine | 7-2 | | | | | | | Starting Engine When Cold | 7-2 | | | | | | | Starting Engine When Hot | 7-2 | | | | | | | Starting Engine When Flooded | 7-2 | | | | | | | Starting Engine With External Power Source | 7-3 | | | | | | | Warm-Up | 7-3 | | | | | | | Ground Check | 7-3 | | | | | | | Takeoff | 7-4 | | | | | | | Climb | 7-5 | | | | | | | Stalls | 7-5 | | | | | | | Cruising | 7-5 | | | | | | | Turbulent Air Operation | 7-6 | | | | | | | Maneuvers | 7-6 | | | | | | | Approach and Landing | 7-6 | | | | | | | Stopping Engine | 7-7 | | | | | | | Airspeed Data | 7-7 | | | | | | | Mooring | 7-8 | | | | | | | Weight and Balance | 7-8 | | | | | | | Air Conditioning | 7-8 | | | | | | | Air Conditioner Operational Check Procedure | | | | | | | | Air Conditioner Effects on Airplane Performance | | | | | | | | Emergency Locator Transmitter | 7-9
7-10 | | | | | | # **OPERATING INSTRUCTIONS** # **PREFLIGHT** The airplane should be given a thorough visual inspection prior to each flight. Particular attention should be given to the following items: - a. Release seat belt securing control wheel. - b. Master switch ON. - c. Check fuel quantity indicators (two tanks). - d. Master switch and ignition OFF. - 2. a. Check for external damage, operation interference of control surfaces or hinges. - b. Insure that wings and control surfaces are free of snow, ice or frost. - 3. a. Visually check fuel supply, secure caps. - b. Drain all fuel system sumps and lines and check for water, sediment and proper fuel. (See Fuel System Section for procedure.) - c. Check that fuel system vents are open. - 4. a. Check landing gear shock struts for proper inflation (approximately 4-1/2 inches). - b. Check tires for cuts, wear and proper inflation. - c. Check brake blocks and discs for wear and damage. - 5. a. Inspect windshield for cleanliness. - b. Check the propeller and spinner for defects or nicks. - c. Check for obvious fuel or oil leaks. - d. Check oil level, 8 quarts maximum (Insure dipstick is properly seated.) - e. Inspect cowling and inspection covers for security. - f. Check nose wheel tire for inflation, wear. - g. Check nose wheel shock strut for proper inflation (approximately 3-1/4 inches). - h. Check for foreign matter in air inlets. - Check alternator belt tension. - 6. a. Stow tow bar and control locks, if used. - b. Check baggage for proper storage and security. - 7. a. Upon entering aircraft ascertain that all primary flight controls operate properly. - b. Close and secure the cabin door. - c. Check that required papers are in order and in the aircraft. - d. Fasten seat belts and shoulder harness. Check function of inertia reel. ## STARTING ENGINE - Set parking brake ON. - 2. Set the carburetor heat control in the full COLD (OFF) position. - 3. Select the desired tank with fuel selector valve. ## STARTING ENGINE WHEN COLD - 1. Open throttle approximately 1/4 inch. - 2. Turn the master switch ON. - 3. Turn the electric fuel pump ON. - 4. Move the mixture control to FULL RICH. - 5. Engage the starter by rotating magneto switch clockwise and pressing in. - 6. When the engine fires, advance throttle to desired setting. If the engine does not fire within five to ten seconds, disengage starter and prime with one to three strokes of the priming pump. Repeat starting procedure. # STARTING ENGINE WHEN HOT - 1. Open the throttle approximately 1/2 inch. - 2. Turn the master switch ON. - 3. Turn the electric fuel pump ON. - 4. Put mixture control in full RICH. - 5. Engage the starter by rotating magneto switch clockwise and pressing in. When the engine fires move the throttle to desired setting. # STARTING ENGINE WHEN FLOODED - 1. Open the throttle full. - 2. Turn the master switch ON. - Turn the electric fuel pump OFF. - 4. Put mixture control in IDLE CUT-OFF. - 5. Engage the starter by rotating magneto switch clockwise and pressing in. When the engine fires, advance the mixture control and retard the throttle. When the engine is firing evenly, advance the throttle to 800 RPM. If oil pressure is not indicated within thirty seconds, stop the engine and determine the trouble. In cold weather it will take a few seconds longer to get an oil pressure indication. If the engine has failed to start, refer to the "Lycoming Operating Handbook, Engine Troubles and Their Remedies." Starter manufacturers recommend that cranking periods be limited to thirty seconds with a two minute rest between cranking periods. Longer cranking periods will shorten the life of the starter. # STARTING ENGINE WITH EXTERNAL POWER SOURCE* An optional feature known as Piper External Power (PEP) allows the operator to use an external battery to crank the engine without having to gain access to the aircraft battery. The procedure is as follows: - 1. Turn aircraft MASTER SWITCH to OFF. - 2. Connect RED lead of PEP kit jumper cable to POSITIVE (+) terminal of external 12-volt battery and BLACK lead to NEGATIVE (-) terminal. - 3. Insert plug of jumper cable into socket located on aircraft fuselage. - 4. Turn aircraft MASTER SWITCH to ON and proceed with NORMAL engine starting technique. - 5. After engine has been started, turn MASTER SWITCH to OFF and remove jumper cable plug from aircraft. - 6. Turn aircraft MASTER SWITCH to ON and check alternator ammeter for indication of output. DO NOT ATTEMPT FLIGHT IF THERE IS NO INDICATION OF ALTERNATOR OUTPUT. ## WARM-UP As soon as the engine starts, the oil pressure should be checked. If no pressure is indicated within thirty seconds, stop the engine and determine the trouble. In cold weather it will take a few seconds longer to get an oil pressure indication. Warm-up the engine at 800 to 1200 RPM. Takeoff may be made as soon as the ground check is completed, providing that the throttle may be opened fully without backfiring, or skipping, and without a reduction in engine oil pressure. # GROUND CHECK Check the magnetos at 2000 RPM by switching from Both to Right then back to Both before switching to Left. Differential drop should not exceed 50 RPM while the total drop on either magneto should not exceed 175 RPM. Check vacuum gauge; indicator should read 5" ± .1" Hg at 2000 RPM. * Optional equipment Check both the oil temperature and pressure. The temperature may be low for some time if the engine is being run for the first time of the day, but as long as the pressure is within limits, the engine is ready for takeoff. Check the annunciator panel lights with the press-to-test button*. Carburetor heat should also be checked prior to takeoff to be sure that the control is operating properly and to clear any ice which may have formed during taxiing. Avoid prolonged ground operation with carburetor heat ON as the air is unfiltered. Operation of the engine driven fuel pump should be checked while taxiing or during preflight engine run up by switching off the electric fuel pump and observing fuel pressure. The electric fuel pump should be on during takeoff to prevent loss of power should the engine driven pump fail. The engine is warm enough for takeoff when the throttle can be opened without the engine faltering. For air conditioner ground check refer to page 7-8. ## TAKEOFF Just before takeoff the following items should be checked: - 1. Fuel on proper tank - 2. Electric fuel pump on - 3. Engine gauges checked - 4. Flaps set - 5. Carburetor heat off - 6. Mixture set - 7. Seat backs erect - 8. Safety Belts/harness fastened - 9. Empty seats- seat belts snugly fastened - 10. Trim tab set - 11. Controls free - 12. Door latched - 13. Air conditioner off # NOTE Mixture full rich except a minimum amount of leaning is permitted for smooth engine operation when taking off at high elevation. In the conventional takeoff procedure set the trim control slightly aft of neutral. Allow the airplane to accelerate to 50 to 60 miles per hour, then ease back on the wheel enough to let the airplane fly itself from the ground. Premature or excessive raising of the nose will result in a delayed takeoff. After takeoff let the aircraft accelerate to the desired climb speed by lowering the nose slightly. #### Short Field, Obstacle Clearance: Lower the flaps to 25° (second notch), accelerate to 55-60 miles per hour and ease back on the control wheel to rotate. After breaking ground, accelerate to the best angle of climb speed, 78 miles per hour. Slowly retract the flaps when the obstacle has been cleared, and continue climb at 89 miles per hour. # Short Field, No Obstacles: Lower the flaps to 25 ° (second notch), accelerate to 55-60 miles per hour. Ease back on the control wheel to rotate and accelerate to best rate of climb speed, 89 miles per hour. Slowly retract the flaps while climbing out. *Serial nos. 28-7525001 through 28-7625275 ## Soft Field, No Obstacle: Lower the flaps to 25° (second notch), accelerate aircraft and pull nose gear from the ground as soon as possible, lift off at lowest possible airspeed. Accelerate just above the ground to best rate of climb speed, 89 miles per hour. Climb out while slowly retracting the flaps. # Soft Field, Obstacle Clearance: Lower flaps to 25° (second notch), accelerate aircraft, pull nose gear off as soon as possible and lift off at lowest possible airspeed. Accelerate just above the ground to best angle of climb speed, 78 miles per hour to climb past obstacle clearance height; continue climb while accelerating to best rate of climb speed, 89 miles per hour, and slowly retract the flaps. ## **CLIMB** The best rate of climb airspeed at gross weight is 89 miles per hour. The best angle of climb airspeed is 78 miles per hour. At lighter than gross weight these speeds are reduced. The recommended en route climbing speed of 100 miles per hour provides increased visibility over the nose. Shallow turns of a few degrees will also aid forward visibility during climb out. The air conditioner may be turned on after all obstacles have been cleared. #### **STALLS** Stall characteristics of the Cherokee are conventional. Visual stall warning is provided by a red light located on the left side of the instrument panel which illuminates automatically between 5 and 10 miles per hour above stall speed. Gross weight stalling speed with power off and full flaps is 55 miles per hour at 2150 pounds. With flaps up this speed is increased 9 miles per hour. Loss of altitude during stalls can be as great as 200 feet, depending on configuration and power. Intentional spins are prohibited in the normal category airplane and when air conditioning or ventilation blower is installed. # **CRUISING** The cruising speed is determined by many factors, including power setting, altitude, temperature, loading and equipment installed on the airplane. The normal cruising power is 75% of the rated horsepower of the engine. True airspeeds, which may be obtained at various altitudes and power settings, can be determined from the charts in Performance Charts Section. Use of the mixture control in cruising flight reduces fuel consumption significantly, especially at higher altitudes, and reduces lead deposits when the alternate fuels are used. The mixture should be leaned when 75% power or less is being used. If any doubt exists as to the amount of power being used, the mixture should be in the FULL RICH position for all operations. Always enrich the mixture before increasing power settings. To lean the mixture, pull the mixture control until the engine becomes rough, indicating that the lean mixture limit has been reached in the leaner cylinders. Then enrich the mixture by pushing the control towards the instrument panel until engine operation becomes smooth. The continuous use of carburetor heat during cruising flight decreases engine efficiency. Unless icing conditions in the carburetor are severe, do not cruise with the heat on. Apply full carburetor heat slowly and only for a few seconds at intervals determined by icing severity. In order to keep the airplane in best lateral trim during cruising flight, the fuel should be used alternately from each main tank. It is recommended that one main tank be used for one hour after takeoff, the other main tank used until nearly exhausted, then return to the first main tank. # TURBULENT AIR OPERATION In keeping with good operating practice used in all aircraft, it is recommended that when turbulent air is encountered or expected the airspeed be reduced to maneuvering speed to reduce the structural loads caused by gusts and to allow for inadvertent speed build-ups which may occur as a result of the turbulence or distractions caused by the conditions. ## **MANEUVERS** The airplane is approved for certain aerobatic maneuvers, provided it is loaded within the approved weight and center of gravity limits. (See Airplane Flight Manual.) The maneuvers are spins, steep turns, lazy eights and chandelles. Spins are prohibited when air conditioning is installed. Intentional spins are prohibited in the normal category airplane. Lazy eights and chandelles may be performed in the normal category provided a 60° angle of bank and/or a 30° angle of pitch is not exceeded. For approved maneuvers and entry speed refer to the Airplane Flight Manual. # APPROACH AND LANDING Landing check list: - 1. Fuel on proper tank - 2. Mixture full rich - 3. Electric fuel pump on - 4. Seat backs erect - 5. Flaps set (115 MPH) - 6. Safety Belts/harness fastened - 7. Air conditioner off The airplane should be trimmed to an approach speed of about 85 miles per hour with flaps up. The flaps can be lowered at speeds up to 115 miles per hour, approach speed is reduced 3 miles per hour for each notch of flaps used. Carburetor heat should not be applied unless there is an indication of carburetor icing, since the use of carburetor heat causes a reduction in power which may be critical in case of a go-around. Full throttle operation with carburetor heat on is likely to cause detonation. The amount of flap used during landings and the speed of the aircraft at contact with the runway should be varied according to the landing surface and existing conditions, both windwise and loadwise. It is generally good practice to contact the ground at the minimum possible safe speed consistent with existing conditions. Normally, the best technique for short and slow landings is to use full flaps and enough power to maintain the desired airspeed and approach flight path. Mixture should be full rich, fuel on the fullest tank, carburetor heat off, and electric fuel pump on. Reduce the speed during the flareout and contact the ground close to the stalling speed (55 to 65 MPH). After ground contact hold the nose wheel off as long as possible. As the airplane slows down, drop the nose and apply the brakes. There will be less chance of skidding the tires if the flaps are retracted before applying the brakes. Braking is most effective when back pressure is applied to the control wheel, putting most of the aircraft weight on the main wheels. In high wind conditions, particularly in strong crosswinds, it may be desirable to approach the ground at higher than normal speeds with partial or no flaps. ## STOPPING ENGINE At the pilot's discretion, the flaps should be raised and the electric fuel pump turned off. After parking, the air conditioner and radios should be turned off and the engine stopped by pulling the mixture control to idle cut-off. The throttle should be left full aft to avoid engine vibration while stopping. Then the magneto and master switches should be turned off and the parking brake set. #### AIRSPEED DATA All airspeeds quoted in this manual are calibrated unless otherwise noted. Calibrated airspeed is indicated airspeed corrected for instrument and position errors. The following table gives the correlation between indicated airspeed and calibrated airspeed if zero instrument error is assumed. This calibration is valid only when flown at maximum gross weight in level flight. # AIRSPEED CORRECTION TABLE | Flaps 0°
IAS-MPH | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | |------------------------|----|----|----|----|-----|-----|-----|-----|-----|-----| | CAS - MPH | 66 | 75 | 83 | 92 | 101 | 110 | 119 | 128 | 137 | 146 | | Flaps 40°
IAS - MPH | 60 | 70 | 80 | 90 | 100 | 110 | 120 | | | | | CAS-MPH | 64 | 72 | 81 | 90 | 99 | 108 | 117 | | | | ### MOORING The Cherokee should be moved on the ground with the aid of the nose wheel tow bar provided with each plane and secured in the baggage compartment. Tie downs may be secured to rings provided under each wing, and to the tail skid. The aileron and stabilator controls should be secured by looping the seat belt through the control wheel and pulling it snug. The rudder is held in position by its connections to the nose wheel steering, and normally does not have to be secured. The flaps are locked when in the full up position, and should be left retracted. ## WEIGHT AND BALANCE It is the responsibility of the owner and pilot to determine that the airplane remains within the allowable weight vs. center of gravity envelope while in flight. For weight and balance data see the Airplane Flight Manual and Weight and Balance form supplied with each airplane. ## AIR CONDITIONING* To operate the air conditioning system either on the ground or in flight: 1. Start the engine (ground operation). 2. Turn the air conditioning Master Switch to "ON." 3. Turn "TEMP" control to desired temperature. Clockwise rotation increases cooling. 4. Select desired "FAN" position, "LOW," "MED" or "HIGH." # AIR CONDITIONER OPERATIONAL CHECK PROCEDURE Prior to takeoff the air conditioner should be checked for proper operation as follows: - 1. Check aircraft Master Switch ON. - 2. Select desired "FAN" position, "LOW," "MED" or "HIGH." - 3. Turn the air conditioner control switch to "ON" the "Air Cond. Door Open" warning light will turn on, thereby indicating proper air conditioner condenser door actuation. - 4. Turn the air conditioner control switch to "OFF" the "Air Cond. Door Open" warning light will go out, thereby indicating the air conditioner condenser door is in the up position. - 5. If the "Air Cond. Door Open" light does not respond as specified above, an air conditioner system or indicator bulb malfunction is indicated, and further investigation should be conducted prior to flight. The above operational check may be performed during flight if an inflight failure is suspected. ^{*} Optional equipment Air Conditioner Controls # AIR CONDITIONER EFFECTS ON AIRPLANE PERFORMANCE Operation of the air conditioner will cause slight decreases in the cruise speed and range of the Cherokee 140. Power from the engine is required to run the compressor, and the condenser door, when extended, causes a slight increase in drag. When the air conditioner is turned off there is normally no measurable difference in climb, cruise or range performance of the airplane. # NOTE To insure maximum climb performance the air conditioner must be turned off manually before takeoff to disengage the compressor and retract the condenser door. Also the air conditioner must be turned off manually before the landing approach in preparation for a possible go-around. Although the cruise speed and range are only slightly affected by the air conditioner operation, these changes should be considered in preflight planning. To be conservative, the following figures assume that the compressor is operating continuously while the airplane is airborne. This will be the case only in extremely hot weather. - 1. The decrease in true airspeed is approximately 5 mph at 75% power and 4 mph at 50% power. - 2. The decrease in range may be as much as 28 statute miles for the 36 gal. (standard) capacity and as much as 39 statute miles for the 50 gal. (reserve) capacity. ## NOTE To read power from the Power vs. Density Altitude Chart in this manual, add 50 rpm to the value observed on the tachometer when the air conditioner is operating. The climb performance of Cherokee 140 is not compromised measurably with the air conditioner operating since the compressor is declutched and the condenser door is retracted, both automatically, when a full throttle position is selected. When the full throttle position is not used or in the event of a malfunction which would cause the compressor to operate and the condenser door to be extended, a decrease in rate of climb of as much as 100 fpm can be expected. Should a malfunction occur which prevents condenser door retraction when the compressor is turned off, a decrease in rate of climb of as much as 50 fpm can be expected. # **EMERGENCY LOCATOR TRANSMITTER*** The Emergency Locator Transmitter (ELT) when installed, is located in the aft portion of the fuselage just below the stabilator leading edge and is accessible through a plate on the right side of the fuselage. (On aircraft manufactured prior to mid-1975, this plate is retained by three steel Phillips head screws. On aircraft manufactured from mid-1975 and on, this plate is attached with three slotted-head nylon screws for ease of removal; these screws may be readily removed with a variety of common items such as a dime, a key, a knife blade, etc. If there are no tools available in an emergency the screw heads may be broken off by any means.) The ELT is an emergency locator transmitter which meets the requirements of FAR 91.52. The unit operates on a self-contained battery. A battery replacement date is marked on the transmitter label. To comply with FAA regulations, the battery must be replaced on or before this date. The battery must also be replaced if the transmitter has been used in an emergency situation or if the accumulated test time exceeds one hour, or if the unit has been inadvertently activated for an undetermined time period. On the unit itself is a three position selector switch labeled "OFF," "ARM" and "ON." The "ARM" position is provided to set the unit to the automatic position so that it will transmit only after impact and will continue to transmit until the battery is drained to depletion or until the switch is manually moved to the "OFF" position. The "ARM" position is selected when the transmitter is installed at the factory and the switch should remain in that position whenever the unit is installed in the airplane. The "ON" position is provided so the unit can be used as a portable transmitter or in the event the automatic feature was not triggered by impact or to periodically test the function of the transmitter. Select the "OFF". position when changing the battery, when rearming the unit if it has been activated for any reason, or to discontinue transmission. * Optional equipment #### NOTE If the switch has been placed in the "ON" position for any reason, the "OFF" position has to be selected before selecting "ARM." If "ARM" is selected directly from the "ON" position, the unit will continue to transmit in the "ARM" position. A pilot's remote switch, located on the left side panel, is provided to allow the transmitter to be controlled from inside the cabin. - 1. On some models the pilot's remote switch has three positions and is placarded "ON," "AUTO/ARM," and "OFF/RESET." The switch is normally left in the "AUTO/ARM" position. To turn the transmitter off, move the switch momentarily to the "OFF/RESET" position. The aircraft master switch must be "ON" to turn the transmitter "OFF." To activate the transmitter for tests or other reasons, move the switch upward to the "ON" position and leave it in that position as long as transmission is desired. - 2. On other models the pilot's remote switch has two positions and is placarded "ON/RESET" and "ARM (NORMAL POSITION)." The switch is normally left in the down or "ARM" position. To turn the transmitter off, move the switch to the "ON/RESET" position for one second then return it to the "ARM" position. To activate the transmitter for tests or other reasons, move the switch upward to the "ON/RESET" position and leave it in that position as long as transmission is desired. The locator should be checked during the ground check to make certain the unit has not been accidentally activated. Check by tuning a radio receiver to 121.5 MHz. If there is an oscillating sound, the locator may have been activated and should be turned off immediately. Reset to the "ARM" position and check again to insure against outside interference. # NOTE If for any reason a test transmission is necessary, the test transmission should be conducted only in the first five minutes of any hour and limited to three audio sweeps. If tests must be made at any other time, the tests should be coordinated with the nearest FAA tower or flight service station. # BLANK PAGE